DR.BABASAHEB AMBEDKAR MARATHWADA
UNIVERSITY, AURANGABAD

‘L“”“””“‘jg‘

] 51[' 'Y(" m::m_m

Sagar B.C.A. College, Jalna

QQDC_P.‘TloN'ﬂ(/
x y —g¢4 o

S
63‘ il ~»Y
3

A Project Report On
Information Retrieval on the Internet

Submitted To
UNDLER THE GUIDANCT OF
AJITRUNMAR

Submitted by
BORADE SATISH SAHEBRAO
M.LiB SY

Year 2022-23

1

(% scanned with OKEN Scanner

i ;v"-'i”i;l 111 ol Master OF Libvary and Infon

(M Lib 8Y)

CERTIFICATE
This is to certify that, the following student

Borade Satish Sahebrao

Has successfully completed the summer internship project

Information Retrieval on the Internet

In the p:lrliul fulfillment of the rcquiremcnl of Master Of Library and Information Science
course asexpected by Dr. Babasaheb Ambedkar Marathwada University,

Aurangabad for Academic Year 2022-23.

= (3

External Examiner Internal Examiner Principal

Head)
Department of Humanities N. D. NAJARDHANE
Sagar BCA College, Jalna. PRINCIPAL

Sagar BCA College
Devmurti, Tq. Dist. Jalna

(% scanned with OKEN Scanner

STUDENT DECLARATION

This is to declare that this Summer Training Project veport on “Informition [Retrieval ai
the Internet” is a record of genuine work done by me under the guidance of ANITKUMAR

in the partial fulfillment to the requirement for Master O Library and Information Scienee | declare

that this Summer Training project report is original and not submitted to anyother university before

(}/

Signature of the Student:

Student’s Name: Borade Satish Sahebrao
PRN No. 2021015200526844
Exam Seat No. CMLD401214

(% scanned with OKEN Scanner

ACKNOWLEDGEMENT

While conducting this report, T got support in many wiys from many people Firet T am
deeply grateful to my project guide, AJITKUMAR who helped me with full devotion and
always supported me camestly whenever it was needed, Without his guidance, mental

&moral support and academic inputs this report was not possible.

This Training report could never have seen the light of the day without his co- operation
of those Clients who participated in this, T am thankful to all of them for giving me their

valuable time,

My fricnds have been biggest support for me at every juncture of life. They
manifested their great interest in my research work also and always tried to make |
thingscasy for me.

. , , . ;
A word of gratitude goes to my family members whose love; affection and understanding |
have enabled me to complete this end with ease,

At the end, I thank to Almighty for giving me courage and strength to conduct this project
report.

¥

(BORADE SATISH)

o , _J

(% scanned with OKEN Scanner

Lnformation Retrieyval on the Tnternet

Qutline
1. Intoduction, 11 Scarch Fngmes, 1-2 Search Fngine History, 1-3 Saareh Fogine Features

and Nenvices, -4 Search Fogine Architectures

Wb Crawling, -1 Robats Exelusion Protocol, 2-2 Robols Meth Tag, 2-3 Mulu-

Mheeaded Spidering . 24 Focused Spidering, 2-5 Keeping Spidered Pages Up-to-Date
The nformation Rewieval Systen, 31 Preprocessing the: Document Colleetion, 3-2
Information Reteieval Models, 3-2-1 The Boolean Model, 3-2-2 The Vector Space

Model, 3-2-3 Latent Senatie Indexing, 3-2-4 The Probabilistic Model, 3-1 Relevanee
Foadback

4. Pyvaluation of nformation Retrieval Systems, -1 Precision and Recall, +-2 F=-measure
and E-measure, 43 Mean Average Precision, -1- Novelty Ratio and Coverage Ratio

‘we

5. Practical Considerations, 31 Ltticient Indexing, $-2 Examples of Information Retrieval
Sistems, 5-2-1 SMART, §-2-2 Lueene, 3-2-3 Lemwr, 5-2-4 OKAPL, 5-3 Lixample of
Latge-Seale Search Engine Architecture: Google, 5-4 Page Ranking Algorithms, 5-4-1
Hubs and Authorities, 3-42 Google's PageRank, 5-5 Commercial Aspeets of Scarch
Lngines: Sponsored Links

0. The Tnvisible Web, 6-1 Scarchable Databases, 6-2 Lxcluded Pages

7. Other Types of Information Retrieval Systems, 7-1 Multimedia Information Retrieval, 7-

2 Digital Libraries. 7-3 Distributed Information Retrieval Systems

Conclusion and Future Directions, 8-1 Natural Language Querics, 8-2 The Semantic Web

and Use of Meta-Data, 8-3 Visualization and Categorization ol Resulls

o

9. Glossary, Bibliography

i v \

(% scanned with OKEN Scanner

\Dhsiract

y engine arc the
al system which e
present approached to Web ¢

I'he mam Lnl\)l\pn(m\ ol a \h”rl
ages and the Information Retriey
In this chapter w¢
used to

s the task of retriev
I

n ;{-,in

that answer a user query
Reteval models, and

considerations melude information about existing [R systems
scale search engine (Google), including the idea ol ranking we
Hubs an Authonties algorithm, and Google's PageRank algorithm).
Imisible Web. the part of the Web that is not indexed by scarch ¢
other types of IR systems: digital librarics. multimedia retrieval systems (1
distributed IR systems. We conclude with
and inputting querics in natural language.

methods cvaluate

N

nus

visualizing search results

INTRODUCTION

There is a huge quantity of text, audio, video, and other documen

Internet. on about any subject. Users need to
particular information needs. There arc two ways of
engines or to browse directories organized by categories (
still a large part of the Internet that is not accessi
Information retricval (IR) is the task of representing,
Jccess to information items. IR is different from data retrieval, which
data in databases with a given structurc. In IR systems, t
contained in free form in text (webpages or other documen
IR systems implemented in 1970’s were designed to wor
example lcgal documents). Some o
In this chapter we describe information retr
faced by search engines. One particular challenge is
webpages available on the Internet{(for example, about 8 .billion we
Google in 2005). Another challenge is inherent to any information retricva
with text: the ambiguity of the natural language (English or other langua
difficult to have perfect matches between documents and user queries.
The organization of this chapter is as follows. We briefly mention

history, features, and services. We present t
. discuss its Web crawling component, which has t
= we focus on the Information Retrieval component which has t

(mainly text documents) that answer a user query. We present current metho

the performance of the Information Retricval component. Pr

information about cxisting IR systems and a dctaile
(Google); we present methods for ranking webpages by their
Authorities algorithm and Google’s PageRank algorithm). In another secti
' Invisible Web, the part of the Web that is not indexed by search engines.

other types of IR systems: digitaj
We conclude with a discussion of the Semantic Web and other future trends.

ts) or in multimedi

Web crawler which has the task

(he retrieval - performance.
and a detailed example of a large-
bpages by their importance (the
Then we discuss the
ngines. We briclly present

a discussion of the Semantic Web anc

be able to find relevant informatio
searching for information: to usc
such as Yahoo Directorics). There is
ble (for cxample private databascs a
storing, organizing, and offering
is about finding precise
he information is not structured, it is

of collectimg
my lext docunments
wling. [nformation
Practical

ic, video, clc.), and
| future trends in

available on the
n to satisly their
a scarch

ts

nd intranets).

a content. The first

k with small collections of text (for
f these techniques are now used in search engines.

ieval techniques, focusing on the challenges
the large scale, given by the huge number of
bpages were indexed by

| system that deals
ges) that makes it

the search engines

he generic architecture of a search engine. We
he task to collect webpages to be indexed. Then
he task of retrieving documents

ds used to evaluate

actical considerations include
d example of a large-scalc search engine
importance (the Hubs an

on, we discuss the
We briefly present

libraries, multimedia IR systems, and distributed IR systems.

(% scanned with OKEN Scanner

Ihere are many general-purpose scarch engines available on the Web. A resource containing up-
to-date information on the most used search engines is: http://www.scarchengincwatch.com.
[ere are some popular scarch engines (in alphabetic order):

AllTheWeb hitp:/www.alltheweb.com/

AltaVista htp://www.altavista.com/

Excite http://www.excite.com/

Google http://www.google.con/ 1

Hotbot hitp://www.hotbot.com/

Lycos htip://www.lycos.com/

MSN Scarch http://scarch.msn.com/

Teoma htp:/teoma.com/

WiseNut htp://www.wischut.com/

Yahoo! http://scarch.yahoo.com/

Mela-search engines combine several existing search engines in order to provide
documents relevant to a user query. Their task is reduced to ranking results from the different
scarch cngines and climinating duplicates. Some examples are: http:/www.metacrawler.com/,
hutp://www.mamma.com/, and htip:/www.dogpile.com/.

Search Engine History

The very first tool used for searching on the Internet was called Archie (the name stands for
"archive"). It was created in 1990 by Alan Emtage, a student at McGill University in Montreal.
The program downloaded the directory listings of all the files located on public anonymous FTP
sites, creating a scarchable database of filenames. Gopher was created in 1991 by Mark McCabhill
at the University of Minnesota. While Archie indexed file names, Gopher indexed plain text
documents. Two other programs, Veronica and Jughead, searched the files stored in Gopher
index systems.

The first Web search engine used Wandex, a now-defunct index collected by the World
Wide Web Wanderer, a web crawler developed by Matthew Gray at MIT in 1993. Another very
carly search engine, Aliweb, also appeared in 1993, and still. runs today. The first "full text" . {
crawler-based search engine was WebCrawler, 1994. Unlike its predecessors, it let users search
for any word in any web page; this became the standard for all major search engines ever since.
It was also the first one to be widely known to the public. Also in 1994, Lycos (which started at
Carncgie Mellon University) came out, and became a major commercial endeavor.

Soon after, many search engines appeared and became popular. These included Excite,
Infoscek, Inktomi, Northern Light, and AltaVista. In some ways, they competed with popular
directories such as Yahoo!. Later, the directories integrated or added on search engine
technology for greater functionality.

Scarch cngincs were also known for the Internet investing frenzy that occurred in the late
1990s. Several companies entered the market spectacularly, with record gains during their initial
public offerings. Some have taken down their public search engine, and are marketing enterprise-
only cditions, such as Northern Light.

Around 2001, the Google scarch engine rose to prominence (Page and Brin, 1998). Its
success was based in part on the concept of link popularity and PageRank, that uses the premise
that good or desirable pages are pointed to by more pages than others. Google's minimalist user

(¥ Scanned with OKEN Scanner

imerface was very popular with users, and has since spawned a number ol mitators Google 15
currently the most popular search engine. In 2005 it indexed approximately 8 billion pages.
more than any other scarch engine. It also offers a growing range of Web serviees. such as
Google Maps and online automatic translation tools.

In 2002. Yahoo! acquired Inktomi and in 2003, Yahoo! acquired Overture, which owned
AlltheWeb and AltaVista. Despite owning its own scarch engine, Yahoo nitially kept using
Google 1o provide its users with scarch results. In 2004, Yahoo! Jaunched 1ts own scarch engine
based on the combined technologies of its acquisnlmns and providing a service that gave pre-
eminence 1o the Web search engine over its manually-maintained subject directory.

MSN Scarch is a scarch engine owned by Microsoft, which previously relied on othets
for its search engine listings. In early 2008 it started showing its own results, collected by s own
crawler. Many other scarch engines tend to be portals that merely show the results from another
company's search engime. For more details and scarch engine timehnes see, for example.
hitp:/ en wikipedia.ore/wiki/Search_engine.

Search Engine Features and Services

Search engines allow a user 1o input keywords that describe an intormation need. The also oller
advanced scarch capabihues. Although they Tead to more precise. they are less utithzed by users
We briefly discuss some advanced search features. Boolean features (AND, OR. NOT) that
allow retrieval of documents that contain all the kevwords (AND). any ol the keywords (OR).
exclude some words (NOT), or combmations of these Boolean operators The prosimnty feature
scarches for phrases or consecutive words (usually simple search can do this 1f the words are
surrounded by double quotes). The search can be done only in particular ficlds, such as URILS or
titles. Linnts can be imposed on the type o retrieved pages: date, language, file types, ele.

Some scarch engmes also offer senvices: news directones, image scarch, maps (such as
Google Maps). language tools (such as automanc translation tools or mterfaces n particular
languages). newsgroup search, and other spectahzed searches

Search Enagine Architectures

The components of a search engine are: Web crawling (gzathening webpages). ndexing
(representing and stonng the mformation), retrieval (bemng able to reteve documents relevant to
user queries), and ranking the results i their order of relevance. Figure | presents a simphtied
view of the components of a search engine. More details about the mam module, the IR system,
will follow in the next sections

(% scanned with OKEN Scanner

. Document
bpl(lcr Corpus
—
Input: IR
Query String System
' / Output:

Ranked
Documents

1. Page 1
2. Page 2
3. Page 3

Ay

Figure 1. The simplified architecture of a scarch engine.

WEB CRAWLING

Web crawlers, also known as spiders or robots, have the task to collect webpages to build the
text collection for the IR system. The text is extracted from the HTML code of the webpages.
Some information related to the HTML format may be stored too. For example, text in headings
or jn bold font can be given higher weight than the rest of the text.

A crawler starts with one or more http addresses (a set of root URLs), and follows all the
links on these pages recursively, to find additional pages. It can proceed by depth-first searching
(follow the first link in a page and all the links in the new pages that it leads to, then come back
fo follow the rest of the links in the current page) or by breadth-first searching (follow all the
links in the page for one step, then the links in the pages they point to, for onc step, ctc.).
Breadth-first has the advantage that it explores uniformly outward from the root page but
requires memory fo store all the links waiting to be traversed on the previous level (exponential
in the depth of the links structure). It is the standard spidering method. Depth-first requires less
memory (linear in depth) but it might get “lost” pursuing a single thread. Both strategies can be
casily implemented using a queuc of links (URLS) to be visited next. How new links are added to
the queue determines the scarch strategy. FIFO (first in first out, append to end of the queuc)
gives breadth-first search. LIFO (last in first out, add to front of queue) gives depth-first search.
Heuristically ordering the queuc gives a “focused crawler” that dircets its scarch towards
“inferesting” pages. A spider needs to avoid visiting the same pages again when the links arc
cireular; it needs to keep track of pages that were already visited.

To extract links from a webpage in order to collect candidate links to follow, HTML
hyperlink fields are parsed. Here are two examples of hyperlinks:

-

! <frame src="site-index.htm|”>

(¥ Scanned with OKEN Scanner

relative 1o the current base URL

[the URL 15 not specified, like in the Jast example. the ink s g
ndex hml). The Jinks are put nte

I file name is not specified. a default name 1s used (such as 1
canonical form: the ending slash is removed, if there 1s one. mile
page are removed, cte. Once the pages are collected. the text 1s
documents, to be processed by the IR system.

Robot exclusion prolocols are used to prevent certain sites or wehpages from beng
indexed by Web crawlers, Web sites and pages can specify that robots should not crawl or index
certim arcas, by using the Roholsilixclusion Protocol or the robots meta tag. The second one
newer and Jess well-adopted than the first onc. Thesc standards are conventions 1o be followed
by “good robots”. They cannot be enforced, but

companies have been prosecuted for
“disobeying” these conventions and “trespassing”™ on private cyberspace.

mal references within the same
extracted from the HTML

The Robots Exclusion Protocol

The Robots Fxclusion Protocol 1s a site-wide specification of excluded directorics The e
administrator has 1o put a “robots.txt™ file at the root of the host's Web directory. Sec tor
example hitp: Awww.chav.com/robots.txt. The file “robots 1x™ s a st of excluded directonies for
a given robot (user-hgent). This file contams blank Tines to - scparate different user-agent
disallowed directorics. with one directory per “Disallow ™ Ine. No regular expression can be used
as patterns lor directories.

To exclude all robots from the entire site, the file would contain:

ep-agents *
I H % 1 ’/’,,': /l
To exclude specific directories:
User-agent: °*
Jisalleow: ftop/
Disalicw: /cgi-pin/
Disallow: /users/paranoid/
T'o cxclude a specific robot:
User-agent : GooglebBot
Disallow: /
To allow a specific robot:

’

JGé€ !—r;jf'l.' : GoogleBol * !
. - i ' ! ¢ d -

Disallow:

The Robots Meta Tag

An mdividual document tag can be used 1o exclude mdexang or following links in a particular
section of a specific HTML document can include a robots meta tag, such
as “meta nam robots” content = none” - The content value can be a pair of values for
two aspects: index or noindex for allowing or disallowing the indexing of this page. and

followornofo for allowing or disallowing followng the hinks i this page. There are two

webpage. The HEAD

special values: 2! indez, follow and none noindex, nofollow Examples:
meta nat “robora” content="noindex, follow”

neta f robors” content="index, nofcllow”

era name="robors” content="none”>

(% scanned with OKEN Scanner

{1 el
b e prtiee

Mulli-Threaded Spidering , b {
Network delays are frequent when downloadimg mdividual pages I |L‘-|)I"’]Il :'-’l“Vl S
threads running in parallel, each requesting i page from ""‘““(m"m " ;” z Lot g
distributed to threads, (o guarantee cqui(ul)lc (lwlrll)flllm) ol r'cqu(:',l‘; acyony 4l ”' ’;"’ ,’
order to maximize through-put and avoid overloading any single server, lu.,r ::/.’.;‘,‘:;)”:, ,”
Google spiders had multiple coordinated crawlers with about 300 threads cach. togethier BRI

able 1o download over 100 pages per second.
14

Focused Spidering ' ’
More “interesting” pages could be explored first. “)Pl';"-“f'«"l":fj
and link-dirccted. For the former, if the desired topic description oy s , ‘
viven, the spidering algorithm could sort the queue of links by the similarity (c.z. cosine U,":“Ii’;):
of their source pages and/or anchor text to this (opic description, For the Jatter, the spider could
keep track of in-degree and out-degree of cach encountered page, and sort the queue !': prefer
popular pages with many in-coming links (authoritics), or 10 prefer summary pages % N spasy

out-going links (/nbs). See the section on page ranking algorithms for more details,

There are two styles of focus!
iple pages of nterest 2re

ed pages, deleted pages. €1c. A

and deletions. A spider
) to defermine if the

Keeping Spidered Pages Up-to-Date

The Web is very dynamic: there arc many new pages, updat
search engine necds to periodically check spidered pages for updates
could look in the HTML head information (c.g. meta tags on the Jast update
page has changed, and only reload the entire the page il needed. It could track how often cach
page is updated and preferentially return to pages which are historically more dynamic. It could
preferentially update pages that are accessed more often to optimize the freshness of popular

pages.
THE INFORMATION RETRIEVAL SYSTEM

Figurc 2 presents a morc detailed view of the architecture of an IR system (Bacza-Yales and
Berthier Ribeiro-Neto, 1999). Text Operations are used to preprocess the documents collections
and to extract index words. The indexing module constructs an inverted index from words 1o
document pointers. The searching module retrieves documents that contain given query words.
using the inverted index. The ranking module scores all the retrieved documents according fo a
relevance metric. The user interface manages interaction with the user: the input of the query and
the output of the ranked documents, including the visualization of results. The query operations
can transform the query in order to improve retrieval (query expansion using synonyms {rom 2

thesaurus, query transformation using relevance feedback).

(% scanned with OKEN Scanner

User Interface ‘4 l

BN ' ([ox
Q\‘l.\vr\, ,l vl:v.‘;ltr\m'mlmw.)1 |)
eed s B ‘{” [opical View # T

. % Query Indexmg Databaye
User Operations < Manager
Leedbagk~" A=s
1

R l/l’ — - l Inverted i !

Searching ‘ il

KQM\\S > Searching \ (lmlv\') !
- - — - —— \\ - 4

v

Text

-~ . — - ‘_ ’
(l{.mkc(lx__ Ranking | . (" Retneved)

N Does, Doces

Database

Freure 20 The arehitecture ol an IR system: Text operations are applicd ol the text ol the
documents and on the deseription of the user mformation need i order 1o transtoron e m
smplificd form needed for computation. The documents are mdexed and the ndes s used 1o
exeeute the search. After ranked documents ave retrieved. the user can provide feedback whic h
can be used to refine the query and restart the seareh for unproved resulls

Preprocessing the document colleclion
There are several preprocessing steps needed to prepare the document collection for the 1R task
The first step 1s 10 Alter out unwanted characters and mathup (¢ FHEML tags, punctuation,
numbers, ete.). Then the text needs 1o be broken mto tokens (keywordsy by wsing as delnmers
white space and punctuation characters. This it not quite as straghtfonward as 1t seems, sinee
words in texts are not always clearly delimited (for example, it the text s You can't do this, you
can constder the apostrophe as i@ word separator o get two words can and (0 or 1pnore 1t as
separator and consider ane word can'r,or expand the contacted form mto two words can and not
and usc the white space as separator) { - i

The keywords can be used as they are, or they can be transtormed mito & base form, for
example nouns m the singular form. verbs m the infinitive form, ete (¢ ¢, books becomes bool,
talked becomes talk). A common approach is (o stem the tokens o “stem™ forms. For example,
computational becomes comput and computing becomes: comput. Stemming the terms before
building the inverted mdex has the advantage that it reduces the size of the dex, and allows tor
retrieval of webpages with vanous inflected forms of a word (for example, when searching for
webpages with the word computation, the results will melude webpages with computations and "
computing). Stemmng is casier 10 do than computing base forms, because stemmers remove
sullixes. without needmg a full dictionary of words mnca language. A popular and fast stenmimer 15
Porter’s stemmer,

Another uselul preprocessing step is (o remove very frequent words that appear i most
of the documents and do not bear any meaningful content. They are called stopwords (¢ ¢, a.
the. it. of. could, ¢tc.y. An example of stopwords list can be tound at; . .
hitp:/ www lextek.com/manuals onix/stopwords 1Lhiml.

(% scanned with OKEN Scanner

Vv O ot wotds could al ol

ll)ll\nll.”” '!'nl'..\ : “""l”"“' af 1
drc oy ot

wiyvei (i
hevawonds (pn:le\ sy a domam spreid
analy e the test collechon onder 1o detect

TRt
COHend (i watd that et
iy erted mder il

HLLCERS iy the ’

olten)
Now the text s ready for the n

Levaord a hst of documents that contan it

ext step. bulding the
i order to allow for fast

slep
1

Information Retrieval Models

Ius section presents information retrieval mode
all the IR models are casily scaled up fo be able (o deal with o very

Web, The most important TR models are, the 13 :
of these ol

{ $ 10088
Is that can be apphied on vy text collectio

larue collection
W gy |
i ooleap Modal

pages collected from the :)

Veetor Space Model, and the Probabilistic Mode]. Vanous extension’ i
‘ ' ' ic Indexmg. whi an extension ol
possible. We discuss one ol them here. Latent Semantic Indexme. which 1 an cz ;

Veetor Space Model.

The Boolean Model

The Boolean model is the simplest to implement. A document is repre
Querics are Boolean expressions of keywords, connected by AND. O
use of brackets to indicate the scope of these operators. For example. the query
Rio Brazil or Hilo Hawaii, but not Hilton is typed by the user as:

[[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton]

The output of the system is a list of documents that are relevant. but there will be no /
matches or ranking. The Boolean model is very rigid: AND means “all”™; Ol mcans “an; Al
matched documents will be returned, making it difficult o control the number of document,
retrieved. All the matched documents satisfy the query to the same degree; that makes it difficult
to rank the output. Another disadvantage of this model is that is it not casy for the users 1o

sented as a set of keyworde,
1. and NOT. including the
“all the hoels o

parnid)

express complex queries.

The Vector Space Model . { :

The vector space model of information retrieval is a very successful statistical method proposed
by Salton (1989). It generates weighted term vectors for cach document in the collection, and for
the user query. Then the retrieval is based on the similarity between the query vector and
document vectors. The output documents arc ranked according to this similarity. The similarity

is based on the occurrence frequencies of the keywords in the query and in the documents,

Lct’s assume that ¢ distinct terms remain after preprocessing; let’s call them index wrms
or the vocabulary. These terms form a vector space with dimensionality ¢, the size of the -
vocabulary. Each term i, in a document j, is given a weight w,. Both the documents and the
querics arc expressed as (-dimensional vectors: d,= (w;, w,, ..., w,).

A collection of N documents can be represented in the vector space model by
documents-by-terms matrix. An cntry in the matrix corresponds to the “weight” of a term in the
document; zero means the term has no significance in the document; it simply docsn’t appear in
the document. The matrix tends to contain lots of zeros.)

(% scanned with OKEN Scanner

T,

T, T, eee
d, wi w2 wil
dy wi w2 w2
dy Wiy W2V Wiy

and Orif it doces nol

document
more

more important, ic.
as weights.

e | if the term occurs in the
t terms in a document are
1c frequencics of the terms

! The weights in the matrix can b
(binary weights); but the more frequen
indicative of the topic. Therefore it is good to use tl

Let / be the frequency of the term 7, in the document d, o P
\We can normalize the ferm fiequency (1f) across the entire corpus: if, = J, /max {/u}. Terms

that appear in many different documents arc /ess indicative of overall topic.
Let df be the document frequency of term T, — the number of documents cont

and let idf be the inverse document frequency of term T:

aining the term /.

idf, = log (N/df)

(where N is the total number of documents). The idf
discrimination power. The logarithm is used to dampen
combined term importance indicator is 1f-idf weighting:

w, = tf,yidf, = if;log (N/df).

A term occurring frequently in the document but r
given high weight. Many other ways of dctermining tcrm weights h

Experimentally, //-id/ has been found to work well.
The query is also transformed into a vector. It is typically treated as a document and also

tf-idf weighted. Alternatively, the user could supply weights for the given query terms.
The similarity between vectors for the document d, and the query ¢ can be computed as

the vector inner product: - = = 2

(a { sim(d j.q) =dyj) g= 2w -w
. i=1 i
where w, is the weight of term 7 in document j and w,, is the weight of term / in the query
For binary vectors, the inner product is the number of matched query terms in the
document (the size of the intersection). For weighted term vectors, it is the sum of the products
of the weights of the matched terms. There are several problems with the inner product: it does
not ha\.'e a bounded range of values; it favors long documents with a large number of unique
terms; it measures how many terms are matched but not how many terms arg not matched i
The cosine similarity measure tends to work better. The formula is the same as ll.1c inner
product, but it is normalized by the length of the documents and the length of the query (the

length of a vector is the squarc root of the sum of the squarcs of its componcnts)
[.

valuc 1s an indication of a ferm’s
the effect relative to /o A typical

arely in the rest of the collection is
ave been proposcd.

- =2 Z (l\'u.Wu,) R 1
cosSim(d)= dye =__i=1
q N
. dl . 1 2 ! 9 -
/ Towy, o X owy I || l
\i=1 i=1

(¥ Scanned with OKEN Scanner

¢ higher the cosinc value -
and the vector of the query.

angles between (he two vectors (th
angle, the length of the

between the vector of the document

The cosine measures the
ause we consider only the

closer to 1. the smaller the angle

therefore a more relevant document). Bec
documents is not a problem anymore.

A naive implementation ol the vector space retrieval is straightforw

| vectors, for all the keyword

convert all the documents in collection C to 1f-idf weightec ‘
d vector g; then for each document d, in C
and present top-ranked

vocabulary I convert the query (o a 1f-idf-weighte
compute cosSim(d, ¢g), sort the documents by decreasing score

documents fo the user. Thé time complexity would be o(vr-1an. 1t would take very long for
large 7 and C (for example, if [] = 10,000 and |C] = 100,000 then "¢l = 1,000,000,000).

A practical implementation is based on the observation that documents containing none
of the query words do not affect the final ranking. Identifying those documents that contain at
least one query word is easily done by using an inverted index. The numerator in the cosine
similarity formula will be calculated much faster because the multiplications where one of the

terms is zero will not be exccuted.
The steps of a practical implementation arc as follows

(tokenization, stopword removal, stemming), dctcrmines the keywords in the vocabulary to bc
used as index terms. Step 2 is the building of the inverted index, with an entry for each keyword
in the vocabulary (see Figure 3). The index is a data structurc that will allow fast access in the
retrieval step (hash table, B-tree, sparse list, etc.) For each keyword, the index keeps a list of all

ard but impractical:
s in the

. Step 1, pre-processing

the documents where it appears together with the corresponding term frequency (1/). Tt also keeps
So the tf-idf scorcs can bc

the total number of occurrences in all documents (for the idf score).
The cosine similarity also requires document

computed in one pass trough the collection.

lengths; a second pass to is needed to compute document vector lengths. The time complexity of
indexing a document of n tokens Is O(n). So indexing m such documents takes O(m n).
Computing idf scores can be done during the same first pass. Therefore |computing the vector
lengths is also O(m n). Completing the process takes O(m n), which is also [the complexity of just

reading in the collection of documents.
—

' ID,..r/; |
{ ‘

Index t d
. { Index terms df, D7] T I
computer 3
database 2 D.3 —_—

I

Fciencc 4
system] !———J “
,7 D2 lists o

Tl Fod
TITAUATIIIC

Figure 3 Example of inverted index: for each term, df'is the number of documents in which it
occurred: each list element records the document where the term occurred and how many times.

o The last step is the retrieval process. The inverted index from Step 2 is used to find the
limited set of documents that contain at Icast one of the query words. Then the cosine similarity

(¥ Scanned with OKEN Scanner

of those documents 1o the quety w vorpated - The retved doviment ane preseited to e e
meversed order of thew simdany (o the guen

he mam advantages of the veeto \pace madel e b ‘llll\l\l\‘ aml |".\.‘\"| un cleat
wathematical heory, it cansiders hoth toeal () and lobal G word ocauienee fregrenees, "
provades partial matehing and vanked tesuliag it fends o work guite well e practiee and allows
cllicient mplementation (or e document callechons,

Uhe main weakiesses ates it does nol aeeount e serantic mbormton (e word sense)
and syntaetie nformation (e phrase siuetre, word ovder, proxinty foatony; it Lk the
control ol a Boolean model (e, regririmg a lerm o appear i dhenment, o exaple, piven a
two-term quety A B A may prefer adociment containing A egquenty but not Byover
docwment that containg both A and 13, but both less fequently),

Latent Semantic Indexing
Latent Seoantie Tadexing (181 ix an extension of the veetor space tetieval method (Deenwester
et al, 1900, 1STean vetrieve relevant documents even when they do not share any words with
the query. Keywords are replaced by coneepts (latent™ coneepts, nol explieit ones), Therefore il
only a synonym of the keyword is present in a docnment, the docament will be still Tound
relevant, The idea behind LSL i (o transtorm the mateix of documents by terms inese mote
concentrated mateix by redueing the dimension of the veetor space, Fhe number of dimensions
becomes mueh lower, there is no longer a dimension for each term, but tather a dimension for
cach “latent™ coneept or group ol synonyms (thougl it is not clear what is the desired numbet ol
coneepts), The dimensionality ol the matuix is reduced by a mathematical provess called sinpular
value decomposition, For more details see, for example,
hup:/Isicesearch.teleordia.convlsi/l Stpapers. hul

The advantage of LSL is its strong Tormal famework that can be applied for text
collections in any language and (he capacity to retrieve many velevant documents, But the
caleulation ol LSI is expensive, so in practice it works only for relatively small text collecetions,
The main disadvantage of LSLis that it does not allow for (st retrieval, an inverted index cannot
be used since now we cannot locate documents by index keywords,

. : { [' . 1 : { !

The Probabilistic Model
The probabilistic framework, initially proposed by Robertson and Sparek-lones (1970), is based
on the following idea. Given a user query, there is a set ol documents which contain exaetly the
relevant documents and no other documents, called the ideal answer set. The query is a process
for specilying the properties of the answer sety but we don’t know what these properties are,
Theretore an eltort has to be made to guess a deseription of the answer sej, and retrieve an initial
sel of documents. Then the user inspeets the top retrieved documents, Tooking for the relevant
ones. The IR system uses this information to refine the deseription of the ideal answer sel. By
repeating this process, it is expected that the deseription of the ideal answer setwill improve,

The description of ideal answer set is modeled in probabilistic terms, Given a user query
¢ and a document d, the probabilistic model tries to estimate the probability that the user will
find the document ¢, relevant, The model assumes that this probability ol elevance depends only
on the query and the document representations. The ideal answer set is referred o as R and s

(% scanned with OKEN Scanner

Lohould masimize the probabihity of reevance, Docriments i the set K e predicted 1o he
relevint

Ihe probabilistie tanking 1s computed as’
st) PR)/ PSR | d)

s 1s the ratio of the probability that the document o 1s relevant and the probability that it 15 nol
relevant. It reflects the odds of the document o being relevant, and minimizes the probability of
an erroneous judgment. Using Bayes rule (for two events A and B, the probability of A given B
i PCAIB) — PIBIA) P(A) 7 P(13)) we expand the formula;

) = PR PR ~ Pl HRY-

sl PUd TR PR o)

Ped, | k) is the probability of randomly sclecting the document d, from the set R of relevant
documents. P(R) stands for the probability that a document randomly selected from the
document collection is relevant. The meanings attached to P(d, | —R) and P(—R) arc analogous
and complementary. P(R) and P(—R) arc the same for all the documents relative to the query.

We replace the probability of cach document by the product of the probabilities of the
terms it contains. We assume the terms occur in a document independent of cach other: this is a
simplifying assumption that works well in practice, even if in reality terms arc not independent,
the presence of a term might trigger the presence of a closely related term. We obtain:

)~ L pi, 1().H-P(/, -R
d _l ,l:i J\', () 77#;(, =)

sim(d 4

where Pek, |) is probability that the index term &, is present in a document randomly sclected
from the set R of relevant documents and P(=k | R) is the probability that &, is not present . The
probabilitics for =R have analogous meanings. Taking logarithms and ignoring factors that are
constant for all the documents in the context of the same query we obtain:

,r/)EZw w (log _[2(4‘,_}.[2.)_+l"‘=’>—/)(1;i—1:k)—‘)

sim(d/
¢ (' : : 0

‘ . {
i C T Pk R P(=k, | =R)

Where w are binary weights, 1 if the index term is in the document or in the query, 0 if not.

Pk | R)=1-P(k | R) and P(=k | =R) = 1-Plk|-R).
The probabilities left to estimate are: P(k,| R) and P(k | -R). They can have initial guesses:
Prk,| R) = 0.5 and P(k | =R) = df./ N, where df; is the number oftlocuments that contain k..
This initial guess is used to retrieve an initial sct of document ¥, from which the subset V.
contains the index term &, The estimales are re-evaluated:

Ptk | R) =V./V and Pk, | -R) = (df.=V) /(N=V)
This process can be repeated recursively. By doing so, the guess of the probabilitics can be
improved without the need of the user intervention (contrary to what we mentioned above).

The last formulas pose problems for small values of V and V, (such as V=1 and V= 0).
To cireumvent these problems, an adjustment factor is added, for cxample: *

Pk | R) = (VA0.5)/ (V+1) and Pk | -R) = (df,—V+0.5)/(N- V+1)

A popular variant of the probabilistic model is the Okapi formula (Robertson et. al, 2000).

(% scanned with OKEN Scanner

Relevance Feedhack —
Ihe users tend to ask short queries, rrerers
documents are retrieved as answers becausc
have multiple senses). [f we know that some
terms from those documents can be added to the query

relev ar::ilu:umcma:. This is called relevance feedback. Often. it is not possible to ask the user (ljo
judge the relevance of the retrieved documents. I this case p.s'emlo-relemncefee(/b(lc/c methods
can be used. They assume the first few retrieved documents are relevant and use the most
important terms from them to expand the query.

ed is complex.
anguage (words

ation ne
of the natural |
clevant to the query-

in order to be able to retrieve morc

cven when the mnform
on the ambiguity
of retrieved documents were I

EVALUATION OF INFORMATION RETRIEVAL SYSTEMS

nformation retricval systems there is a necd for standard test

To compare the performance of i :
colicctions and benchmarks. The TREC forum (Text Retricval Conference, http://trcc'.mst.gov/)
provides test collections and organizes competition belween IR systems every year, since 1992.
In order to compute cvaluation scores, we need to know the cxpeeted solution. Relevance
judgments are produced by human judges and included in the standard test collections. CLEF
(Cross-Language Evaluation Forum) is another evaluation forum that organizes competition
between IR systems that allow querics or documents in multiple languages (http://www.clef-

campaign.org/), since the year 2000.
In order to evaluate the performance of an [R system we need to measure how far down

the ranked list of results will a user need to look to find some or all the relevant documents.
The typical evaluation process starts with finding a collection of documents. A set of queries
needs to be formulated. Then one or more human experts are needed to exhaustively label the
relevant documents for cach query. This assumes binary relevance judgments: a document is
relevant or not to a query. This is simplification, because the relevancy is continuous: a
document can be relevant to a certain degree. Even if relevancy is binary, it can be a difficult
judgment to make. Relevancy, from a human standpoint, is subjective because it depends on a
specific user’s judgment; it is'situational, it refates to the user’s current needs; it depends on
human perception and behavior; and it might be dynamic, it can change over time.

Once the test suite is assembled, we can compute numerical evaluation measures, for

cach query, and then average over all the querics in the test set.

Precision and Recall
Precision (P) measures the ability to retrieve top-ranked documents that are mostly relevant.
Recall (R) measures the ability of the search to (ind all of the relevant items in the corpus.

: retrieved
P = Number of relevant documents

—TFotal-number-of—documents—retrieved—

R = Numbe ()l[relevapt dpcuments retrieved
forl ilunberof relevant documents .
1

(% scanned with OKEN Scanner

F-measure and E-measure

. e b cean The F-measure 1%
Fhe F-mceasure combines preeision and recall, taking their harmonic mean, I'he F-measw

high when both precision and recall are high.

T — P _ 2
F=MRe=
R P
A gencralization of the F-measurc is the E-measure, which allows cmphasis on precision
over recall or vice-versa. The valud of the parameter [} controls this trade-ofl; if § = 1
1at - .~ o v - L « . — ()~
precision and recall are weighted equally (E=F), if p < | precision weights more, and if > |
recall weights more.

(1+B3 :—Hi;—"—»{l%_r)
)PR -

= B s P+ R
R P .
Figurc 4 shows the distribution of the retricved documents versus the relevant documents.
In the upper part of the figure, the intersection of the two circles is the part that needs to be
maximized by an IR system. In the lower part of the figure, the number of documents that need
to be maximized is in the lower left corner and the upper right corner. The other two corners
would contain zeros for an ideal IR system.

Entire doctgiiéaved & not retrieved &

collcc?io h irrelevant irrcRatxirtved
cle documents
va

s

retrieved & not retrieved but

rel
relevant relevant
: ev | . ,
] . \ i \ i
an
retricved not retricved

Figure 4. Retricved versus relevant documents.

Sometimes, for very large text collections or the Web, it is difficult to find the total
number of relevant items. In such cases, one solution is (o sample across the collection and to
perform relevance judgment on the sampled iteras. Another idea is to apply dilferent retrieval
algorithms or different IR systems to the same collection for the same query, then aggregale the
relevant items from all of them and perform relevance judgments on this set.

(% scanned with OKEN Scanner

Mean Ay erage Precsion

Vsl precinien i iy Hperian o recall m IR svstems, 1 the user s ook for an answer

o a queny, nat for all the possible answens Recall can be important w hen a user needs to know

Al the relovant mfomuation on a topic -\ sValem can ICrcdse precision by decreasing recall and

vieeversa, there s a precision recall tradeoft (tor example. recall can be mcreased by "'“l".\

retneving more documents. but the prectsion wall go down, smee many retrieved documents will

notbe relevant) Precision-recall curves can be nsed to compare twe IR systems for all values of

preceton anid vecall .

I fact procision and recall are not enough for evaluating IR systems. For example. il we
have two svatems that retneve 10 documents: each. 5 relevant and 3 not relevant. both have
precision 03, but a svstem that has the tust 3 retneved documents relevant and the next 5
nrelovant s much better than a syatem that has the fst $ retieved documents irrelevant and the
nent S relevant (because the user will be annoved to have to check the trrelevant documents first).
\Modified measutes that combine precistion and recall and consider the order of the retrieved
documents are necded.

Some good measures are precision at 3 retrieved documents. precision at 10 retrieved
documents or some other cut-off pomt: the R-Precision: the interpolated average precision; and
the mean average precision. The tree_eval senpt can be used to compute many evaluation
measures (hup: recastgoy wee_eval).

The R-precesion is the precision at the R-th position in the ranking of the results for a
query that has R known relevant documents.

The nuerpolated average precision: computes precision: at fixed recall intervals (11
points), to allow fair average over all the queries in the test set al the same recall levels. See
Chapter 3 of (Bacza-Yates and Berthier Ribeiro-Neto. 1999) for more details. This measure 1s
not much used use lately inevaluating IR systems.

The most widely-used measure is the mean average precision (MAP score). It computes
precision at cach point in the ranking where a relevant document was found. divided by the
number of existing relevant documents (and then averages over all queries). Here is a simple
example of computing this measure.

Given a query q. for which the relevant documents are dl1. dé. d10, d15, d22, d26, an IR system
retrieves the following ranking: d6, d2. di1. d3. d10. dl. d14, d15, d7, d23. We compute the ¢
precision and recall for this ranking at cach retricved document.

Rank | Document Recall Precision
1 | do 1/6 =0.166 1/1=1.00
2 d2 1/6=10.166 1/2=10.50
3 dil , 1/6=0.166 1/3=0.33
4 d3 | L1/6=0.166 1/4=10.25
5 d1o l 26=033 2/5=0.40
6 dl | 36 =050 36 =0.50
7 did | 36 =0.50 37=042
N d1s { 46 =0.66 48 =0.50
9 d7 46 =0.66 4/9=0.44
10| d23 v 46 =0.66 4/10=0.40

1

(% scanned with OKEN Scanner

In this table, the relevant documents are marked in bold in the ranked list of retrieved
documents (the second column). At cach position in the list, recall is computed as how many
relevant documents were retrieved until this point out of the 6 known 1o be relevant, z}nd
precision is how many correct documents are among these retrieved documents up till this point.
At position 1, one correet document is retrieved out of 6 (recall is 1/6) and | document is correcl
(precision is 1/1). Al position 2, 1 out of 6 relevant documents is retrieved (recall is 1/6) and 1
out of 2 is correct (precision is 1/2). At position 5 once more relevant document is found; recall
becomes 2 out of 6 and precision 2 out of 5. The average precision over positions 1, 3, 6, and 8
where relevant documenits were found is (1.0+0.40+0.50+0.50)/6=0.40. The R-precision is the
precision at position 6, which is 3/6=0.50.

Novelty Ratio and Coverage Ratio

Other aspeets of the retrieved results could be evaluated. The novelty ratio is the proportion of
documents retrieved and judged relevant by the user and of which the user was previously
unawarc: it measures the ability to find new information on a topic. The coverage ratio is the
proportion of relevant items retrieved out of the total relevant documents known to a user prior to
the scarch. 1t is useful when the user wants to locate documents which they have seen before.
The user effort measures the amount of work required from the user in formulating queries,
conducting the scarch, and screening the output. The response time is the time interval between
the reception of a user query and the presentation of system responses. The form of presentation
is the influence of the search output format on the user’s ability to utilize the retrieved materials.

The collection coverage measures the extent o which any/all relevant items are included in the
document collection.

PRACTICAL CONSIDERATIONS

Efficient Indexing

Several implementation issucs were addressed in the section about the vector space retrieval,
including how to build an ipverted index for fast retrieval. Figure 3 presented an example of
inverted index. This idea can be also used in the implementations of the Boolean model and of
the probabilistic modcl. In order to allow searching for exact phrases (two or more consecutive
words) the positions of terms in documents can also be stored in the inverted index. Other
information can be stored in the index as well (for cxample if the word was found in a title,
heading, bold font, ctc.)

THE INFORMATION RETRIEVAL SYSTEM

Figure 2 presents a more detailed view of the architecture of an IR system (Baeza-Yates and
Berthier Ribeiro-Neto, 1999). Text Operations are used to preprocess the documents collections
and to extract index words. The indexing module constructs an inverted index from words to
documenl pointers. The searching module retrieves documents that contain given query words,
using the inverted index. The ranking module scores all the retiieved documents according to a
relevance metric. The user interface manages interaction with thic uer: the input of the query and
the output of the ranked documents, including the visualization of results. The query operations
can transform the query in order to improve retrieval (query expansion using synonyms from a

(¥ Scanned with OKEN Scanner

Important phrases composed ol two or more words could also be deteeted (o be used as
l\'C)""“}'dS (possibly using a domain specific dictionary. or using a statistical method for
analyzing the text collection in order to detect sequences of words that appear together very
often).

Now the text is ready for the next step. building the inverted index that stores for rach
kley\\'ord a list of documents that contain it, in order to allow for fast access during the retricval
step.

r

Information Retrieval Models

This section presents information retrieval models that can be applicd on any text collection. Nol
all the IR models are easily scaled up to be able to deal with a very large collection, such as
pages collected from the Web. The most important IR models are: the Boolean Model, the
Vector Space Model, and the Probabilistic Model. Various cxtensions of these models are
possible. We discuss one of them here, Latent Semantic Indexing, which is an extension of the
Vector Space Modcl.

)

The Boolean Model

The Boolean model is the simplest to implement. A document is represented as a set of keywords.
Querics arc Boolcan expressions of keywords, connecled by AND, OR, and NOT, including the
use of brackets to indicate the scope ol these operators. For example, the query “all the hotels in
Rio Brazil or Hilo Hawaii, but not Hilton™ is typed by the uscr as:
[[Rio & Brazil] | [Hilo & Hawaii]] & hotel & !Hilton]

The output of the system is a list of documents that are relevant, but there will be no partial
matches or ranking. The Boolcan model is very rigid: AND mcans “all™; OR means “any™. All
matched documents will be returned, making it difficult to control the number of documents
retrieved. All the matched documents satisfy the query to the same degree; that makes it difficult
to rank the output. Another disadvantage of this model is that is it not casy for the uscrs to
express complex queries.

The Vector Space Model - . { . ’ i o ;
The vector space model of information retrieval is a very successful statistical method proposed

by Salton (1989). It generates weighted term vectors for cach document in the collection, and for

the user query. Then the retrieval is based on the similarity between the query veclor and

document vectors. The output documents are ranked according to this similarity. The similarity

is based on the occurrence fiequencies of the keywords in the query and in the documents.

Let's assume that 7 distinct terms remain after preprocessing; let’s call them index terms
or the vocabukary. These terms form a vector space with dimensionality 7, the size of the
vocabulary. Each term i, in a document j, is given a weight w,. Both the documents and the
queries arc expressed as {-dimensional vectors: d, = (wy, W, ..., W,).

A collection of N documents can be represented in the vector space model by a
documents-by-terms matrix. An entry in the matrix corresponds (o the “weight” of a term in the
document: zero means the term has no significance in the document; it simply doesn’t appear in
the document. The matrix tends to contain lots of zeros.

!

3

(¥ Scanned with OKEN Scanner

7. .. L

d. wwy Wy
d: werwy L W
dy owiy vy L Wi

The weights i the matrix can be 1 if the term oceurs in the document and 0 if it does not
(binary wetghts): but the more frequent terms in a document are more important, i.c., more
wdicative of the topic. Theretore it is good to use the (requencics of the terms as weights.

Let 7 be the frequency of the term 7, in the document o,

We can normalize the term fiequencey (1) across the entive corpus: ¢, = f, / max o} Terms

that appear in many diffcrent documents are fess indicative of overall topic.

Lot Jf be the document frequency of term 7, — the number of documents containing the term 7,
and [et idr be the inverse document frequency of term 73

l‘(!l,: = log (Ndf)

(where NV is the total number of documents). The idf valuc is an indication of a term’s
discrimination power. The logarithm is used to dampen the effect relative to if. A typical
combined term importance indicator is (f~idf weighting:

w, = - idf = 1, log (N/df).

A term occurring frequently in the document but rarely in the rest of the collection is
eiven high weight. Many other ways ol determining term weights have been proposcd.
Experimentally. ¢/~idf has been found to work well.

The query is also transformed into a vector. It 1s typically treated as a document and also
if~idf weighted. Altematively, the user could supply weights for the given query terms.

The similarity between vectors for the document d, and the query ¢ can be computed as

the vector inner product: s =
) | sim(dj.g)=dj ¢=° L w -w . . { ‘
* i=1 it i

where i, is the weight of term i in document j and w, is the weight of term 7 in the query

For binary vectors, the inner product is-the number of matched query terms in the
document (the size of the intersection). For weighted term vectors, it is the sum of the products
of the weights of the matched terms. There are several problems with the inner product: it does
not have a bounded range of values; it favors long documents with a large number of unique
terms: it measures how many terms are matched but not how many terms are not matched.

The cosine similarity measure tends to work better. The formula is the same as the inner
product. but it is normalized by the length of the documents and the length of the query (the

length of a vector is the square root of the sum of the squares of its components).
t

P — = E (W N w “I)
cosSim(d -tf")=_(/. o = =1 ,
q i - () | 5
J ' Yo, - 2wy l “ l
- \i:l i=1

(¥ Scanned with OKEN Scanner

The cosine measures (he angles between the two vectors (the higher the cosine value -
L‘|().\L‘l: to 1. the smaller the angle between the veetor of the document and the vector of the query.
therefore a more relevant document). Because we consider only the angle. the length of the
documents 1s not a problem anymore.

A naive implementation of the vector space retrieval is straightforward but impractical:
convert all the documents in collection C to 1/idf weighted vectors, for all the keywords in the
vocabulary 1" convert the query to a (/lid/l\{/ciglllcd veetor ¢; then for cach document d in C
compute cosSim(d, ¢); sort the documents by decreasing score and present top-ranked
documents to the user. The time complexity would be O(|¥]-|C)). It would takc very long for
large 1”and C (for example, if |] = 10,000 and |C| = 100,000 then |V]:|C] = 1,000,000,000).

A practical implementation is based on the observation that documents containing none
of the query words do not affect the final ranking. Identifying thosc documents that contain at
least one query word is easily done by using an inverted index. The numerator in the cosine
similarity formula will be calculated much faster because the multiplications where one of the
terms is zero will not be exceuted.

The steps of a practical implementation arc as follows. Step L,
(tokenization. stopword removal, stemming), detcrminés the keywords in the vocabulary to be
used as index terms. Step 2 is the building of the inverted index, with an entry for each keyword
in the vocabulary (scc Figure 3). The index is a data structurc that will allow fast access in the
retrieval step (hash table, B-tree, sparse list, etc.) For each keyword, the index keeps a list of all
the documents where it appears together with the corresponding term frequency (/). It also keeps
the total number of occurrences in all documents (for the idf score). So the tf-idf scores can be
computed in one pass trough the collection. The cosine similarity also requires document
lengths; a second pass to is needed to compute document vector lengths. The time complexity of
indexing a document of n tokens is O(n). So indexing m such documents takes O(m n).
Computing idf scores can be done during the same first pass. Therefore [computing the vector
lengths is also O(m n). Complcting the process takes O(m n), whicis atso e complexity of just

pre-processing

reading in the collection of documents.

—
Index ter ‘ df 0.4
(ndex terms < d XN ' 1 { 1 '
computer 3
databasc 2 D.3

X

science 4

system 1 D..2
TITAaTA T
1dex: for each term, df is the number of documents in which it

Figure 3 Examplc of inverted i
occurred; each list element records the document where the term occurred and how many times.

lists

rieval process. The inverted index from Step 2 is used to find the

The last step is the ret
f the query words. Then the cosine similarity

limited set of documents that contain at lecast one o
1

(¥ Scanned with OKEN Scanner

o those documents 1o the query s computed. The retnieved documents are presented to the user
mreversed order of therr siulanty 1o the query

The mam advantages of the vector space model are: 1t 1s simple and based on clear
mathematical theory: it considers both local (1) and global (idf) word occurrence frequencies. 1l
provides partial matchmg and ranked results; it tends to work quite well in practice and allows
cthaentimplementation for large document collections.

The main weaknesses arc: 1t does not account for semantic information (e.g. word sensc)
and syntachic wmformaton (e g. phrase structure, word ordu proxmuly information): it lacks the
contiol ol a Boolean model (c g.. requiring a term 1o appcar in a document: for cxample. given a
two-term query A B™. it may prefer a document containing A frequently but not B. over a
document that contains both A and B. but both less trequently).

Lalent Semantic Indexing

Latent Semantic Indexing (LSI) is an cxlcﬁsion of the vector space retricval method (Deerwester
e al. 1990). LSI can retrieve relevant documents even when they do not share any words with
the query. Keywords are replaced by concepls (“latent” concepts, not explicit ones). Therefore if
only a synonym of the keyword is present in a document. the document will be still found
relevant. The idea behind LSI s to transform the matrix of documents by terms in a more
concentrated matrix by reducing the dimension of the vector space. The number of dimensions
becomes much lower. there is no longer a dimension for cach term, but rather a dimension for
cach “latent™ concept or group of synonyms (though it is not clear what is the desired number of
concepts). The dimensionality of the matrix is reduced by a mathematical process called singular
value decomposition. For more details sce. for example,
hup: Ist.research.telcordia.com/Isi/LSIpapers.html

The advantage of LSI is its strong formal framework that can be applicd for text
collections in any language and the capacity to retrieve many relevant documents. But the
calculation of LSI is expensive, so in practice it works only for relatively small text collections.
The main disadvantage of LSI is that it does not allow for fast retrieval, an inverted index cannot
be used since now we cannot locate documents by index keywords.

{ i - N Q’ { L} i
The Probabilistic Model

The probabilistic framework, initially proposed by Robertson and Sparck-Jones (1976), is based
on the following idea. Given a user query, there is a set of documents which contain exactly the
rclevant documents and no other documents, called the ideal answer set. The query is a process
for specifying the properties of the answer set, but we don’t know what these properties are.
Therefore an effort has to be made to guess a description of the answer set and retrieve an initial
set of documents. Then the uscr inspects the top retrieved documents, looking for the relevant
ones. The IR system uses this information to refine the description of the ideal answer set. By
repeating this process. it is expected that the description of the ideal answer set will improve.

The description of ideal answer set is modeled in probabilistic terms. Given a user query
¢ and a document d,, the probabilistic model tries to estimate the probability that the uscr will
find the document ¢, relevant. The model assumes that this probability of relevance depends only
on the query and the dlocument representations. The ideal answer set is referred to as R and

(% scanned with OKEN Scanner

should maximize the probabihty of relevanee. Documents i the set R are predicted 1o be

relevant
The probabilisiie ranking is computed as:

sifd.q) -~ PR d)7 PR | d)

and the probability that it Is not
ninimizes the probability ol
he probability of A given B

[is 1s the 1atio of the probability that the document d, is relevant
celevant. Tt reflects the odds of the document d, being relevant, and 1
an erroneous judgment. Using Bayes rule (for two events A and B,
is P(A[13) = P(BJA) P(A) / P(B)) we expand the formula:
jap) = =P HOPRY— ~ P~
sim(dl Pl =R PARY peg Ry
¢ document d, from the sct R of relevant

Pad | R) is the probability of randomly sclecting th
selected from the

documents. P(R) stands for the probability that a document rancdomly
nt collection is relevant. The meanings attached to P(d, | ~R) and P(—R) are analogous
and complementary. P(R) and P(—=R) ase the same for all the documents relative to the query.

We replace the probability of each document by the product of the probabilities of the
terms it contains. We assume the terms occur in a document independent of each other: this is a
simplifying assumption that works well in practice, even if in reality terms arc not indcpendent.
the presence of a term might trigger the presence of a closely related term. We obtain:

,q)zfﬂf*r/\f, R]'H;_ﬂ/i, R
((/] o4 ("';\'1) //)(‘ € —l(’)

docume

Sim

where P(k, | R) is probability that the index term k; is present in a document randomly selected
from the set R of relevant documents and P(—k, | R) is the probability that k; is not present . The
probabilities for =R have analogous meanings. Taking logarithms and ignoring factors that are
constant for all the documents in the context of the same query we obtain:
-)= 2w (log Pt R+ 18 —plirt=rr)
sim(-
‘ i \' i N] i

i 1

P " Pk |R) P(—k; [—R)

Where w are binary weights, | if the index term is in the document or in the query, 0 if not.

P(—k | R)=1-P(k, | R) and P(=k | =R) = I —P(k:| —R).
The probabilities left to estimate are: P(k, | R) and P(k | —R). They can have initial guesses:
Prk, | R) = 0.5 and P(k, | =R) = df;/ N, where df is the number of documents that contain k..
This initial guess is used to rewricve an initial set of document V; from which the subset V,
contains the index term k. The estimates are re-evaluated:

Ptk | R) = V,/V and Pik,|=R) = (df,=V)/(N-V)
This process can be repeated recursively. By doing so, the guess of the probabilities can be
improved without the need of the user intervention (contrary to what we mentioned above).

The last formulas pose problems for small values of V and V, (such as V=1 and V= 0).
To circumvent these problems, an adjustment factor is added, for example:

Pok | R) = (V+0.5)/(V+1) and P(k, | =R) = (df,—V+0.5)/(N-V+])

A popular variant of the probabilistic model is the Okapi formula (Robertson et. al, 2000).

(% scanned with OKEN Scanner

linlevane | sodback
(e treers tend toonske shorl queries. even when the information need 1 complex. Jirclevant
e nimente are retiieved as answvets because on (he ambiguity of the natural Janguiagc (words
Lrcr mtipte senses) 10we kiow (hat somie of retrieved documents were relevant 10 fllC query,
Wi n those docuiments can he added 1o the yuery in order o be able o retricye mMore
clecant decumedts. This s cilled refevance feedback. Olten, il is not pussihlc 1o ask the uscr 10
e the televance of the retrieved docutyents. I this case pseido-relevance feedback methods
e wsed Hliey asstme the first few rettieved documents the most
inpontant erins fto them o expatd the quety.

are relevant and use

EVALUATION OF INFORMATION RETRIEVAL SYSTEMS

(o compare the performinee of information retricval systems there is a nced for standard test

collections and bepehmuarks. The TREC forum (Text Retricval Conference, hltp://lrcc.nisl,gov/)
provides test collections and organizes competition between IR systems cvery year, since 1992.
iy onder (o compute evaluation: scores, we need to know the cxpected solution. Relevance
jdgiments are produced by human judges and included in the standard test collections. C'L'F,l'
(Cfose-| angiage Tvaluation: Forum) is another evaluation forum that organizes competition
between 1R systems that allow gueries of documents in multiple languages (hitp://www.clel-
Campaign.org/), sinee (he year 2000.

(i order (o evaluale the performance ol an IR system w
e raked Tist of results will a user need to look (o find some or all the relevant documents.
The typical evaluation process starts with finding a collection of documents. A set of queries
needs (o be formulated. Then one or more human experts are needed to exhaustively label the
relevant documents for cach query. This assumes binary rclevance judgments: a document is
ielevant of not to a query, This is simplification, because the relevancy is continuous: a
document can be relevant to a cerlain degree. Even if relevancy is binary, it can be a difficult
jidgment to make, Relevancy, from a human standpoint, is subjective because it depends on a
spleific user’s judgment; it is situatlonal, it relates to the user’s currént needs; it depends on
fiuiman pereeption and behavior, and it might be dynamic, it can change over time.

Once the test suile is assembled, we can compute numerical evaluation measures, for
catli query, and then average over all the querics in the test sct.

¢ need to measure how far down

Provision and Recall
Prrecision (1) measures the ability to retrieve top-ranked documents that are mostly relevant.
(1ecall (12) measures the ability of the search to find all of the relevant items in the corpus.
) o retrieved
17— Nimher of relevant dociiments
Sotalnumberof-documents—retrieved—

It = Nuymbe ‘u/ selevapt dpcuments retricyed
/ / (1!1// ' /lﬂbt{/:_{;/,tt;/gw,l docunents

(% scanned with OKEN Scanner

F-measure and E-measure
The F-measure combines precision and recall, taking their harmonic mean.
high when both precision and recall are high.

5 2
F = :}’P—iRR: _l_:_

The I'-measurc 1s

A gencralization of the F-measurc is the E-mecasurc, which allows cmphasis on precision
over recall or vice-versa. The value of the parameter B controls this trade-ofT: il" p=1
precision and recall are weighted cqually (E=F), if f <1 precision weights more, and if p -1
recall weights more.

(1+B. = {‘1‘*_'[])*")
)PR e
E= ‘5 2P+ R
. R P
Figurc 4 shows the distribution of the retricved documents versus the relevant documents.
In the upper parl of the figure, the intersection of the two circles is the part that needs to be
maximized by an IR system. In the lower part of the figure, the number of documents that need

{o be maximized is in the lower left corner and the upper right corner. The other two comers
would contain zeros for an ideal IR system.

Entire doctafidaved & not retrieved &

11T. . . .

collecl{no y irrclevant irrcRuotzitved
cle documents
va

i

retrieved & not retrieved but

rel ,
relevant relevant
ev - . » p
? R { { . < i H
an
retrieved not retricved

Figure 4. Retrieved versus relevant documents.

Sometimes, for very large text collections or the Web, it is difficult to find the total
qumber of relevant items. In such cases, one solution is to sample across the collection and to
perform relevance judgment on the sampled items. Another idea is to apply different retrieval
algorithms or diffcrent IR systems to the same collection for the same query, then aggregate the
relevant items from all of them and perform relevance judgments on this set.

¥

(% scanned with OKEN Scanner

at AnOeir . sl00-
doctments by tokenzng, the text mto words removing «nnumnf.\,'ffulll"ly :|;:!:l:::;l'?tJ'{N‘;:L]:‘ Mi‘ l‘I?
lst, and pertorming stemiming on e remanmmg words to derpve ise ' 1o e vectors
werver vaecuies nounel query, (he query terms e also converled imto '-«L'H_ ;1(1 r;~;|'.|||1: e
Vecton tnner-product similanty computabion s then used 1o “l.“I" (lm,,uuu.nll(, n || ‘,)“w' .
ol thew sty 1o the user query. The nuwm{ version of SMAR (VCI.:l'){I y |)|V e i
aate-ol-the-art options for weiphting the terms in the }/U(Ill?l‘,, JLach lcrm-sw.,l;.]i " 1,‘ * ||-/'n’|un
descrhed as o combination of term fiequency, colleetion [requency, nlnd l‘m!;_.gl lljm'””:(l)ul;””w
components (Salton and Buckley, 1988). 'lvhu h) slem is unplcmcnlcd .mA(for Unix of rating
svsterns and it s avaitable for download al Jjﬂ/ﬂmi,ggwgﬂgIn/pnb/l,nunl/,

Lucene

Lucene s a Java-based open source toolkit for text indexing, and scarching. 1015 cusy (o usc :l?l’d
(exible, In includes a (ull-featured tex! search engine library, suitable for application that
requires Tull-text search, especially cross-platiorm. It is available for download at
hip:/ lucene.apache.org/javafdoes/.

Lemur

The Lemur Toolkit is designed to Jacilitate rescarch in languagce modeling and inl‘urn’mlmn
retrieval, where 1R is broadly interpreted to include such technologies as ad hoc and ,dlstrlbulcd
retrieval, cross-language 1R, summarization, filtering, and classification. The toolkit supports
indexing of large-scale text databases, the construction of simplc probabilistic Janguage models
for documents, queries, or subcollections, and the implementation of retricval systems based on
language models as well as a varicty ol other retrieval models. The system is written in the C and
Cl1 languages, and is designed as a research system to run under Unix opcrating systcms,
although it can also run under Windows. The toolkit is being developed as part of the Lemur
Project, a collaboration between the Computer Science Department at the University of
Massachusetts and the School of Computer Science at Carncgic Mcllon University. It is available
for download at hitp:/www lemurproject.org,

Okapi

The Okapi IR system was qcvcloped at the Centre for Interactive Systems Rescarch at City ¢
University London. The system is based on a formula referring to some half a dozen variables
(Robertson ef. al, 2000), which estimate the probability that a given document is relevant to a
given query. The system has a simple interface and several layers of complex software, which
support both probabilistic and non-probabilistic retrieval functions, and combinations of them. It

is implemented in C/C++ and Tel/Tk for Linux and Solaris, and it is availablc for rcscarch

purposes only, for a nominal fee, at hitp://www.soi.city.ac.uk/~andym/OKAPI-PACK/.

Example of large-scale search engine architecture: Google

Web scarch engines have to deal with very large collections of documents. In addition to
the problems of typical IR systems, they have to deal with scalability and cfficiency issues.

Figure 5 presents the architecture of Google search engine (Brin and Page, 1998). Sce
hitp://www.google.ca/intl/en/corporate/tech.tml -~ for more up-to-date but. very generic *

information. The main components of the architecture accomplish the three functions: crawling
indexing, and searching. -

(% scanned with OKEN Scanner

— T
URL Server ’Sm, 'd Store Server)

Anchors

Y
\ URL Resolver Repository
oY, 4
D
Lexicon
D
Doc
index
PageRank

Figure 5. Google’s architecture.

In order to deal with many small files in an efficient way (in both space requirements and
access time), the system uses big virtual files addressable by 64 bit integers, and it supports
compression. The “Repository” contains the full HTML code of every webpage (compressed), a
document identifier, its length, and its URL. The “Document Index™ keeps information about
each document (the documenl identifier, the current document status, a pointer into the
repository, a document checksum, and various statistics). The “Lexicon” is a rcpository of words,

{ implemented as a list and a hash table of pointers, The list stores occurrences of a particular word
in a particular document. It also records the types of hit: Plain (simple text), Fancy (i
HTML format such as bold or heading) and Anchor (text on a link).

There are two indexes: The Forward Index_(for fast access to words using word
identifiers, and to documents using document identifiers) and e ; x—for tual
retrieval and similarit culation).

Googltext of a link with the page of the link and the page where the link
points to. The a 7cs of doing this arc: the anchors often provide accurate descriptions;
anchors may exist for documents which cannot be indexed (i.e., images, programs, and
databascs); propagating anchor text improves the quality of the results.

Page Ranking Algorithms

In addition to how relevant the retrieved webpages arc to the user query, they can also be Tanked
by their importance. A webpage is important, for example, if there are many webpages that have

(¥ Scanned with OKEN Scanner

lmks 10 it. This section presents the Hubs and Authoritics algorithm (Kleinberg, 1999) and

Google’s PageRank algorithm (Brin & Page, 1998), with examples.

Hubs and Authorities

-.‘“l"/l()l'l'll'.("\‘ are pages that are recognized as providing significant, trustworthy,
n}lm'mntlon on a topic. The in-degree of a page (the number of links that point to the page)
simple measure of authority. Hubs are index pages that provide lots of useful links to relevant
content pages (topic authorities). The algorithm developed by Kleinberg in 1998 attempts (o
computationally determine hubs and authorities on a particular topic 'lhrough analysis of a
relevant subgraph of the Web. It is based on mutually recursive facts: hubs point fo lots of
authoritics and authorities arc pointed to by lots of hubs. Together they tend to form a bipartite
graph, as depicted in Figure 6.

and useful
Is a

. Hubs Authorities
Figure 6. Bipartite gl‘@] of hubs and @thoritics on the Internct.

The algorithm computes hubs and authoritics for a particular topic specified by a query.
First, it determines a set of relevant pa@s for the quer@alled the base set S. Then it analyzes t
link structure of the Web subgraph defined by § to ﬁnalauthority and hub pages in this set. Fo
specific query O, let the set of docum@@}s returned by ‘#Atandard search engine be called the /001
set R. The set S is initialized to R. Then S is expanded with all the pages pointed to by any page
in R and all the pages that point to any page in R. Even within the basc sct S for a given qu
the nodes with highest in-degree are not necessarily authorities (they may be generally populai

pages like Yahoo or Amazon).
The algorithm slowly converges on a mutually reinforcing sct of hubs and authoritics. For

each page p € S, an authority score @, and a hub score h, are maintained. All g, and /i, are
initialized with 1. The algorithm is repeated several times. At each iteration, the scores are
maintained normalized, and the new scores use the values from the previous itcration.

2 (a)= Z(/?p)z =1 ; i

pes p] [z.eS " ’ . i . p
{ v i i N z

Authorities are pointed to by lots of good hubs (all pages ¢ that point to p):

a, = Z hy

uyy=p

Hubs point to lots of good authorities (all pages ¢ that p points at):

hy = Z a, -

§:p—y

s

(¥ Scanned with OKEN Scanner

. iy & { el 1
For example, U pages Lo 2oand 3 point to prge A and page Fpotnls f '

the seores are computed s exemplified in Figre 7 ()

w, hethet f

~a
T

(@]
<[

hyactacba 0

1
. . A
Figure 7. Example of computing scores for authoritics and for hibs,

The hubs and authorities algorithm can be summarized as follows:
Initialize forall p e Sta, = h, - 1
Repeal k times (where k is the number ol iterations):

y - 1 ot { e L
Forallp e §. up = Lh'/ (updite authority scores)
ty oo
h =5 ipdate hub geores
) L“'/ (update hub scores)

el

Forallp e S:

Forall p € 8¢ a,= a,/ ¢ where ¢ is i conslant sueh that: />_<(,,/,/(,), I

' For all p € 8 h,= I/ ¢ whete ¢ is a constant such that: /’2{(/’/' /e) ¢
The algorithm converges to a fiv-point, where the scorey do not change at the next ieration, In
practice, 20 iterations produce fairly stable results,

Google's PageRank
An alternative link-analysis method is PageRank, used by Google (the actual formula currently
used by Google might be stightly different). PageRank does notattempt (o capture the distinetion
between hubs and authoritics, it ranks pages only by authority. Itis applicd 10 the entire Web
rather than a local neighborhood of pages surrounding, the resulls of a query.
[f pis a given page and ¢y, ... g, are the pages that point (o the page p, the page tank PR
of p is given by the sum ol the page ranks ol all the pages ¢ ..o g, cach of them divided by its
number of outgoing links: '

PR(p) = (1-d) + d-(PR(q)/Cly) V... PRg)/Cly.))

(% scanned with OKEN Scanner

e : . ‘ .
where Cly)1s number of Tinks going out of the page ¢ and o 15 dampmg factor which can b

between 0 and 1 (usually o 15 set 1o 0.85).

Note that the sum of all ranks of all the webpages needs to add up to T fact the ks that o
out of any page equally share its rank (due (o the dwiston ol /Rq) by Cly)) The page vank of @
page p is the sum of the weights of all ity inconung hinks. Figure § shows a stpltficd example
where the PageRank values “flow™ from pages (o the pages they cite: Afier several tterations the
PR values stabilize. Figure 9 shows an example of stable fix pon

r

Figure 8. Example of computing Ak scores.

. v
105 ~ -
- A
Figure T Exandp|e of stabilized Pfuy Ri{nflseakes ——
(4 .(5(,) e i =
03 -
— x
. S v
'()()_ (’m 3 \“'Z"'“‘“"‘f;"i"
== . 3
0.4 I
—
03—
~a
{ i ' ‘ i (

(% scanned with OKEN Scanner

(¥ sScanned with OKEN Scanner

RN

alrcady in pages collected by their parent scarch engine. If there 1s 0o link to & page.
cannot “'see’ L. .
Some searchable databases require a fee. and the users log in using passh ords. NMany are
free: here are a few examples of free searchable databases:
hllp://\\'ww.freepint.com’garv/clirect.htm
http://opcit.eprints.org explorearchiv es.shtml
http://www.dcepwebrescarch.info
Of particular value in academic research are:
Librarians Index http://lii.ore: '
Academiclnfo http://www.academicinfo.net
Infomine http://infomine.ucr.edu/

Excluded Pages
There are also some types of pages that scarch engine companics exclude by policy. »Th:r:‘ 15 no
technical reason they could not include them if they wanted. It's a matter of selecting what o
include in indexes that are already huge and expensive to operate. o
Some search engines may choose not to include pages because the format or e
document would be infrequently or unsuccessfully searched by the users of the search‘
engine. Pages formatted in PDF or pages that have very little HTML text might be excluded
(though lately Google and other search engines index PDF files by transforming them Into
plain text with minimal HTML markup). Search engines also have a hard time indexing the
contents of documents in Flash, Shockwave, and other programs like Word, WordPerfect,
etc. Pages consisting almost entirely of images are often excluded as well. SC‘r‘ipf—f’dSCd
pages are usually excluded. HTML links containing a ? lead to script-based pages. A script is a
type of programming language that can be used to fetch and display webpages. They can
be used to create all or part of a webpage, and to communicate with searchable databases.
Most search engines are instructed not to crawl sites or include pages that use script
technology, although it is often technically possible for them to do so. This is a policy
decision. 1f spiders encounter a ? in a URL or link. they are programmed to back oft. beeause
they could encounter poorly written scripts or intentional “spider traps” designed to ensnare
spiders, sometimes bogging them down in infinite loops that run up the cost and time 1t takes for
spiders to,do their work. This may result in the contents of an ecntire site using scripts being .
excluded from a search engine, or d search engine may crawl a safe part of a site and omit others.

OTHER TYPES OF INFORMATION RETRIEVAL SYSTEMS

Multimedia Information Retrieval ;

There is a lot of multimedia content on the Web. The information retrieval systems described
above were adapted to work with collections of images, video, or music. 'A query can be
expressed as text, or as a sample image, or by humming a melody. It the query is in text torm
the IR system can use the text in the caption of the images. or the text descrip;ion of the mu%i\;
(composer, singer, album, etc.) in order to find the information. In this case the traditional th
technology described above is used. If the query is an image or a picce of music. it can be treated
as a digital signal. Techniques such as vector space model can be extended. to compute(lhe
1

(% scanned with OKEN Scanner

similarity between two signals, where the [catures in the vectors will not be frequencics of
occurrence in text, but features extracted by digital signal processing techniques.

A multimedia IR system differs from a traditional IR system in several way _
structure of the multimedia objects is more complex than the structurc of textual data; this
requires integration of multimedia database management systems to adequately represent,
manage, and store multimedia objects. Second, the similarity measure needs to be extended. The
similarity measure is nceded to match a query to a multimedia document, and to rank the
retrieved multimedia documents. Third, query languages are more complex. Depending on the
type of query, the scarch cail be donc only by content (image, music, etc.), only by text
descriptions, or a combination of both. See chapters 11 and 12 of (Baeza-Yates and Berthier

Ribeiro-Neto, 1999) for more details.

s. First, the

Digital Libraries
Traditional libraries arc among the first institutions to use IR systems, to create catalogs of
rccords for the material from the library. The catalogs can be search by users in the library or
over the Web (online public access catalogs). These catalogs use database technology; the_
records are structured according to standards such as MARC (title, a few subject headings, and a
classification number).
Modern libraries are being transformed to digital libraries as a result of the growth in
electronic publishing, which makes information available in a digital form. Through the Web, a
single interface provides access to local resources, as well as remote access to databascs in the
sciences, humanities, and business, including full-text journals, newspapers, and directories.
Special collections, in multimedia not only in text format, become available through the same
gateway. For more details about the technology of digital libraries see, for example, (Lesk, 1997).
Many librarics, particularly academic and large public librarics, have undertaken digital
library project to achieve interoperability and ease of use and access. Two such projects are the
Los Angeles Public Library’s Virtual Electronic Library project (http://www.lapl.org), and
University of Pennsylvania’s Digital Library (http://www.library.upenn.cdu). A digital library
could have no connection to an actual library, for example the ACM Digital Library
(http://portal.acm.org/dl.cfm) that contains journal and conference publications in Computer
Science. | . { . . i . . f
Digital libraries are more than complex IR systems. They are social systems centered
around various communities of users. They also have component for building, cataloging,
maintaining, and preserving repositories. There are many international or national digital library
projects. One such project is the Digital Libraries Initiative (DLI) (phase one 1994-1998, phase
two in progress) supportcd by the National Science Foundation (NSF), the Department of
Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space
Administration (NASA). The DLI phass one contained large rescarch projects at six universities:
University of Illinois Urbana-Champaign, Carnegic-Mellon University, Stanford University,
University of California at Berkeley, University of California at Santa Barbara and University of
Michigan. These projects arc developing the next genceration of tools for information discovery,

management, retrieval and analysis.

(¥ Scanned with OKEN Scanner

Distributed Information Retrieval Systems
When the collection of documents is huge, it can be distributed over many computers. [fnrzllld
computing can be used to speed up processing. Document partitioning can be used to divide the
search task into multiple, self-contained tasks that each involve extensive compumtion. and dqla
processing with little communication between them. Collections can be divided by t('>p|cs, or for
administrative purposcs. When the collection is distributed, an index can be built for_ each
partition, but a centralized index is still needed in order to direct the search for the terms in the
user’s query. To build a distributed IR system, algorithmic IR issues need to be COllSldCr(?d
together with engineering issucs common (o distributed systems in general. The man
engineering issues involve: defining a search protocol for transmitting requests and resul'ts;
designing scrvers that can cfficiently accept requests, initiate subprocesses or threads to service
requests, and exploit any locality inherent in the processing using appropriate caching
techniques; designing a broker that can submit asynchronous scarch requests to multiple servers
in parallel and combine the intermediate results into a final end user result. The algorithmic
issues involve: how to distribute documents across the distributed search servers, how to decide
which servers should reccive a particular scarch request, and how to combine the results from the

dilTerent servers.
A special type of distributed IR systems are Pcer-to-Peer IR systems (P2P), when the

information can be repeated on several computers, and there is no centralized access control. In a
P2P system, the nodes (servers) are independent; each node can leave or enter the system any
time. Examples of P2P systems arc Gnutella and Napster. Sce chapter 9 of (Baeza-Yatcs and
Berthier Ribeiro-Neto, 1999) for more details about distributed systems.

CONCLUSION AND FUTURE DIRECTIONS

This chapter presented an overview of the methods used in information retrieval and search
engines. The technology of search engines is a very dynamic field, always looking for
improvements and new ideas in order to satisty user needs. Future trends in search engines
include technology that is yet il} the stage ofrcsc,;arch prototypes. Multimedia IR sy‘stems on the
Web are becoming more important, as more video, music, and other types of data are available

on the Web and [ast Internet access becomes common.

Natural Language Queries
Text-based IR systems will also evolve. Uscrs could cxpress their querics in natural language,

not just as keywords. This requires deeper syntactic and semantic analysis of the queries and the
documents. Allowing the uset to orally describe the information nced into a microphone is a
more natural way to interact with a search engine (Crestani, 2002). Spoken queries need to be
translated into text querics using a Speech Recognition system (though current speech
recognition technology would introduce recognition crrors that might hurt retricval performance).
Cross-language Information Retrieval systems become available (Savoy, 2003). The queries can
be a language in which the user fecls comfortable, while the documents are in another language.
This requires automatic tranylation of the querics belore matching them to documents for

retrieval,
1

(¥ Scanned with OKEN Scanner

Index: a data structure built to speed up the search. For cach keyword, it records the number of
occurrences in documents and possibly other information.

Information .Rclncval (IR): part of Computer Science that studies the retrieval of information
(not Qal\a) lrm.n a collection of written documents. The retrieved documents aim at satisfying a
user information need usually expressed in natural language.

lnwsn})le Web: the part of the Web not indexed by search engines, mostly c.omposed of
scarchable databascs. These databases produce dynamic HTML pages as results to queries;
therefore the pages cannot be indexed by search engines.

Latent Semantic Indexing: a model of information retrieval that extends the classic veetor
space model; it reduces the dimension of the vector space; the dimensions are no longer the
index terms. they approximate concepts.

Mean Average Precision: an information retricval performance measure that combincs
precision and recall and rewards relevant documents ranked highet in the list of rctricved
documents. Computed as the average of the precision values for each relevant document in the
ranked results.

Meta-data: description of the data (in XML or other description language)

Meta-search: a search technique where a single entry point is provided to multiple
heterogencous search engines. The user query is sent to these search engines and a unified list
of results is presented to the user.

Multimedia Information Retrieval: IR systems that deal with images, video, audio, music or
other multimedia objects.

Page Ranking: methods for ranking webpages by their popularity, for example based on the
number of links that point to a page.
] {

i . i - ‘ { '
Peer-to-Peer Information Retrieval: Distributed IR systems where the nodes are independent
computers that can lcave or join the system any time.

Precision: an information retrieval performance measure that quantifies the fraction of the
retrieved documents which are relevant.
rl

Probabilistic Model: a model of information retricval based on a probabilistic interpretation of
document relevance to a uscr query.

Query: the expression of the user information nced in the input language of the information
system. Usually keywords and sometimes a few Boolean connectives (AND, OR, NOT).
[]
Recall: an information retrieval performancg measure that quantifies the fraction of known
relevant documents that are among the retrievéd documents.

v . .

(¥ Scanned with OKEN Scanner

Relevance Feedback: an interactive process of obtaining feedback from he user about the
relevance or non-relevance of the retricved documents.

Search Engine: An IR system designed 1o find information on the Web, to index webpages in
order to be able to retricve them as result of a user query.

Stemming: a technique for reducing a word to its root form.
T

Stopwords: words that occur frequently in texts, for example articles, prepositions, and
conjunctions.

User Information Need: a natural language declaration of the informational need of'a uscr,
|
Vecetor Space Model: a classic model of document retrieval based on representing documents
and querics as vectors ol index terms.

N

Web Crawler (Web Spider or Robot): a program that collects HTML pages from the Web by

[ollowing links {rom the collected webpage.

BIBLIOGRAPHY

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval, Addison-
Wesley Publishing Company.

Scrgey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web scarch

engine. WWW?7/ Computer Networks 30(1-7): 107-117.

1993. Automatic retricval with locality

Chris Buckley, Gerard Salton, and James Allan. ‘
First Text REtrieval Conference (TREC-1),

information using SMART. In Proceedings of the
pages 59-72. NIST Special Publication 500-207.

Charles L. A. Clarke and Gordon V. Cormack and Thomas R. Lynam. 2001. Exploiting

Redundancy in Question Answering. In Research and Development in Information Retrieval,

pages 358-365.

IIsinchun Chen, Andrea L. Houston, Robin R. Sewell, and Bruce L. Schatz. 1998, Internet
browsing and scarching: User evaluations of category maps and concept space techniques.
Journal of the American Society of Information Science, 49(7):582-608.

FFabio Crestani. 2002. Spoken Query Processing for Interactive Information Retricval. Data and
Knpwledge Engincering, 41(1):105-124.

1

(¥ Scanned with OKEN Scanner

Seon [)CLT\‘\C."ICT. Nusan . D’JHT.!;.\, Th\"!“.lS K Lﬁni!l‘.lif. G’CO.’”C L F’UT""\' "Lnlj RlCh'J-rd
[arshman, 1990, 11‘1\!;\11]\:‘ b latent semanuie analvsis. Jowsal of the Sucien for [nforimation
Scronce, AN0)3VTL07. ’ -

Digital Librany lninative. 2006, hup: www.dli2.nsf.oov

Sanda Harabagiu. Marius Pasca and Steven Maiorano. 2000. Experiments with Open-Domain

Textual Question Answering, in Proceedings of COLING-200. August 2000. Saarbruken.
Germany. pages 292-298. '

John Kleinberg. 1999, Hubs, Authorities. and Communities. In ACV Compuring Surveys, 31(4)-
Michael Lesk. 1997. Practical Digitai Libraries: Books. Bytes. and Bucks. Morgan Kaufmann.

Raymond Mooney and Razvan Bunescu. 2003. Mining Knowledge from Text Using Information

Extraction. SIGKDD Explorations, Special issue on Text Mining and Natural Language
Processing. 7(1):p.3-10. '

Martin F. Porter. 1980. An algorithm for suffix stripping. Program. 14(3): 130-137.
http: Awww .1lartarus.org/martin PorterStemmer

Ellen Riloff. 1999. Informatien Extraction as a Stepping Stone toward Story Understanding. In

Computational Models of Reading and Understanding. Ashwin Ram and Kenneth Moorman,
eds.. The MIT Press.

Stephen E. Robertson and Karen Sparck-Jones. 1976. Relevance weighting of search terms.
Joumal of the American Society for Information Sciences. 27(3):129-146.

Stephen E. Robertson. Steve Walker, and Micheline Hancock-Beaulieu. 2000. Experimentation
as a way of life: Okapi at TREC. Information Processing and Management 36(1):95-108.

Gerard ‘Salton and Chris Buckley. 1988 Term-weighting approaches in automatic retrieval. E
Information Processing and Management, 24(5):513-525.

Gerard Salton. 1989. Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley Publishing Company.

Jacques Savoy. 2003. Cross-language information retrieval: experiments based on CLEF 2000
corpora. Information Processing and Management 39(1).

Semantic Web project. 2006. http:/ www.semanticweb.org/

(% scanned with OKEN Scanner

